

Minutes of SPI Scientific Team Meeting CNR Roma - March 17, 2005

SPI-CR-0-4303-CESR

SPI Scientific Team Meeting CNR Roma - March 17, 2005

- Presentations -

5th Annealing, Ged anomalies, IASW 4.3.1	J.P. Roques
ACS Status	A. von Kienlin
Timing mode in SPIROS	P. Connell
SPI Software for OSA 5.0	P. Dubath
The Electronic Noise Feature at 1.4 - 1.6 MeV	T. Wunderer
.Decompostion Algorithm for Background studies	H. Halloin
Analysis pipeline at MPE	H. Halloin
Status of the SPI background analysis	S. Schanne
Off axis Crab observations	E. Jourdain
Search for Unpredicted Lines from Point Sources	K. Watanabe
60Fe, the next step	M. Harris
Positronium Continuum Emission: All-Sky Distribution	G. Weidenspointner
Status note on 26Al Studies in the Galaxy	R. Diehl

Minutes of SPI Scientific Team Meeting CNR Roma - March 17, 2005

SPI-CR-0-4303-CESR

Agenda

Hardware/Instrument status

5th AnnealingOn board softwareTelemetry	15 min	J.P. Roques	
- ACS Status	10 min	A. von Kienlin	
Analysis Methods and Support			
- Timing analysis and background modelling with SPI	ROS 20 min	P. Connell	
- SPI software development for OSA5	15 min	P. Dubath	
- SPI Electronic-Noise background at 1.4-1.6 MeV	15 min	T. Wunderer	
- Decomposition method for background studies	15-20 min	H. Halloin	
- Analysis pipeline at the MPE, application to the Galactic diffuse emission	15 min	H. Halloin	
- Status of the Saclay background models for 511 keV and Al26 data analysis	15 min	S.Schanne	
Calibration/Software status/Sensibility			
- Crab calibration, Off axis response 15 min	E. Jourdain		
□ Science analyses			
- Search for unpredicted lines from point sources	15 min	K. Watanabe	
- 60Fe, the next step	5 min	M. Harris	
- Positronium Continuum: All-Sky Distribution	15 min	G. Weidenspointner	
- Largescale 26Al study: Update and next steps	15 min	R. Diehl	

Other topics

Team Matters (core program, data rights, research groups; papers; next meetings)

- Coffee breaks at 11.15-11.30 and 16.00-16.15 -

5th Annealing

- Duration approx 130 Hr
- Camera switch-on Feb 3th

No problem to report

J.P. Roques - CESR

GeD anomalies

- Detector 2 failure (Dec. 2003)
- Detector 17 failure (July 2004)
- GeD 2 preamp. offset non nominal
- GeD 17 preamp. offset « nominal »
- But no counts from the PA.
- No reaction of PA to change in HV.
- HV circuits seems to work properly.
- Problem located in the PA
- Primary cause unknown

Detector anomalies investigations

- The cause of the failures has not been identified.
- Long duration ground tests with a spare model camera are ongoing :
 - 3 annealing cycles 130 Hr each
 - 3 periods of operation at 82 K : > 1 month each
 - No problem to report

Preventive action

- New annealing procedure : Keep the cold box at -65 C
- This will avoid thermal cycling of the PA2, cables and feed throughs.
- This will avoid migration of contamination that can occur on the cold box

IASW 4.3.1

- New IASW version has been uploaded
- Science HK can be transmitted below the belts
- Random Pb with ACS switch off at belt entry

ACS status:

- Development of ACS FEE count rates

ACS health and performance monitoring

- Development of ACS single FEE count rates
 - Can be used for PMT gain monitoring
 - Will reveal PMT degradation
- Up to now
 - only 1 FEE failure (FEE57) since launch
- Long-term development :
 - Comparison of ACS FEE rates (UCR,LCR,SSA,ACS)
 - Beginning of 2003, 100 days: 27.02 06.06.2003
 - ➤ 46 days: 1. 12. 2003 15. 1. 2004
 - ➤ 100 days: 12. 2. 2004 15. 5. 2004
 - ➤ 46 days: 31. 7. 2004 12. 9. 2004
 - > 36 days: 5. 2. 2005 11. 3. 2005

ACS overall count rate of 100 days: 12.02. - 15.05.04

ACS overall count rate of 46 days: 03.07. - 12.09.04

ACS overall count rate of 36 days: 05.02. - 11.03.05

General trend observed

- No significant increase of ACS overall rate since last September
 - ➢ 5. 2. 11. 3. 05 period compared to 3. 7. 12. 9. 04
- Increase of ACS overall rate since last February: ~ 18 %
 - From 76 000 cts/s to 90 000 cts/s
 - 3. 7. 12. 9. 04 period compared to beginning of 12. 02. 15. 5.
 04 period
 - Caused by solar minimum activity period
- ⇒ Next viewgraphs: development of single FEE count rates

PSAC count rates: 03.07. - 12.09.04

SPI Co-Is Meeting, CNR-Roma Andreas von Kienlin (MPE)

7

PSAC count rates: 05.02. - 11.03.05

UCR count rates: 03.07. - 12.09.04

SPI Co-Is Meeting, CNR-Roma Andreas von Kienlin (MPE)

9

UCR count rates: 05.02. - 11.03.05

LCR count rates: 03.07. - 12.09.04

LCR count rates: 05.02. - 11.03.05

SSA count rates: 03.07. - 12.09.04

SSA count rates: 05.02. - 11.03.05

RST count rates: 03.07. - 12.09.04

RST count rates: 05.02. - 11.03.05

RSP count rates: 03.07. - 12.09.04

RSP count rates: 05.02. - 11.03.05

ACS temperature: 03.07. - 12.09.04

Andreas von Kienlin (MPE)

ACS temperature: 05.02. - 11.03.05

Timing mode in SPIROS

P.H.Connell University of Valencia Spain

New options in timing mode analysis

- Individual time binning for each catalogue source
- General spline modelling of background BH6
- **QUICKSCAN** option for a more detailed overview
- **TRANSIENT** option eclipsing and flaring functions
- Effects on output solution from background models

Light curves with different timescales in the Cygnus region

Light curves with regular eclipsing and flaring variability

Independent time binning for each catalogue source

- In timing mode the time bins of all sources normally have the same default length given by the input parameter "source-timing-scale".
- Any catalogue source may have its own time bin length by setting its parameters VAR_MODL to "TIME-SCALE" and VAR_PAR(5) to a different time scale.
- This applies to **TRANSIENT**, **WINDOW** and **QUICKSCAN** mode.

Generalized splined background modelling – BH6

SPIROS now has three basic background handling methods:

- Background tracers like GEDSAT, etc BH2.
- Mean count modulation model BH5.
 Returns a M(d)*B(p) background pattern with M(d) modulation values for each detector and mean background per pointing B(p).
- Splined time bin modelling on a minimal time scale BH6. Detector background is handled exactly as sky sources with an effective mask pattern that is the same for all exposures.

Used in WINDOW and TRANSIENT timing mode by dividing the observation period into a sequence of more or less equal time bins covering pointing groups with the parameter "source-timing-scale" or "backgr-timing-scale".
PV phase count data and its GEDSAT background tracer

Count and normalized GEDSAT background rates from PV data for 27.6-47.2 keV

Mean count modulation background model

Assuming detector background $\mathbf{B}(\mathbf{d}, \mathbf{p})$ can be modelled as a multiplicative function of the type $\mu_{\mathbf{d}} \mathbf{B}_{\mathbf{p}}$ the coded mask count response to sources $\alpha_{\mathbf{n}}$ can be written as

$$\mathbf{C}_{\mathbf{d},\mathbf{p}} = \mu_{\mathbf{d}} \mathbf{B}_{\mathbf{p}} + \sum_{\mathbf{n}} \mathbf{M}_{\mathbf{d},\mathbf{p},\mathbf{n}} \alpha_{\mathbf{n}}$$
(1)

The mean value over all detectors for each pointing is then

$$\overline{\mathbf{C}}_{\mathbf{p}} = \overline{\mu} \mathbf{B}_{\mathbf{p}} + \sum_{\mathbf{n}} \overline{\mathbf{M}}_{\mathbf{n},\mathbf{p}} \alpha_{\mathbf{n}}$$
(2)

Multiplying by $\beta_d = \mu_d / \overline{\mu}$ the background can subtraced from (1) to give

$$\mathbf{C}_{\mathbf{d},\mathbf{p}} - \beta_{\mathbf{d}} \ \overline{\mathbf{C}}_{\mathbf{p}} = \sum_{\mathbf{n}} \left[\mathbf{M}_{\mathbf{d},\mathbf{p},\mathbf{n}} - \beta_{\mathbf{d}} \ \overline{\mathbf{M}}_{\mathbf{n},\mathbf{p}} \right] \alpha_{\mathbf{n}}$$
(3)

or the MEAN COUNT MODULATION background model equation

$$\mathbf{c}_{\mathbf{d},\mathbf{p}}(\beta_{\mathbf{d}}) = \sum_{\mathbf{n}} \mathbf{m}_{\mathbf{d},\mathbf{p},\mathbf{n}}(\beta_{\mathbf{d}}) \ \alpha_{\mathbf{n}}$$
(4)

GEDSAT, MCM and BH6 background light curves

GEDSAT, MCM and BH6 light curves for orbit-19 PV data

GEDSAT, MCM and BH6 light curves for orbit-20 PV data

GEDSAT, MCM and BH6 light curves for orbit-21 PV data

GEDSAT, MCM and BH6 light curves for orbit-22 PV data

GEDSAT, MCM and BH6 light curves for orbit-23 PV data

Light curves with QUICKSCAN moving window scan

• QUICKLOOK scans an observation period in a sequence of roughly equal independent timebins covering non overlapping pointing groups. It does not give information about the period between adjacent timebins.

• QUICKSCAN scans an observation with a moving timebin or window, covering roughly equal length pointing groups, but beginning at each pointing to produce roughly smoothed "moving average" light curves.

The timebin length is given by parameter "source-timing-scale" but any source can have a finer time scale in parameter VAR_PARS(5).

Background can also be estimated in timebins via BH6 with a length given by parameter "source-timing-scale" or "backgr-timing-scale".

QUICKSCAN light curves of Cygnus region using PV data

QUICKSCAN light curves of Cygnus region using PV data

Light curves with TRANSIENT function modelling

TRANSIENT mode will divide the observation period into groups of pointings of roughly equal length as in WINDOW mode but allows:

- HAT, LINEAR, QUADRATIC or CUBIC splining
- Cyclic flaring models
- Cyclic eclipsing model functions

Each catalogue source will get the same default binning/splining type and time scale but may have its own specific modelling via parameters:

VAR MODEL: HAT, LIN, QUAD, CUBIC, FLARE, ECLIPSE-n, SINE Function start/reference time in whole days VAR PARS(1): VAR PARS(2): Day fraction of parameter (1) VAR PARS(3): Flare duration VAR PARS(4): Cycle period VAR PARS(5): Timebin length or splining node separation VAR PARS(6): Function factor VAR PARS(7): Function factor

SPI light curves of Cygnus-X1 in PV phase

FOV pointings during Cygnus-X1 double dip

FOV exposure during Cygnus-X1 double dip

SPI light curves of Cygnus-X1 in orbit-19

SPI light curves of Cygnus-X1 in orbit-22

Cygnus-X3 eclipsing model basis function ECLIPSE-3

Structure of a 3-spline CUBIC,QUAD,QUAD polynomial eclipsing function ECLIPSE-3 Shape is determined by a FWHM plus a height factor at the 2*FWHM point

Cygnus-X3 eclipsing wavelet function ECLIPSE-3

Two basis components to construct an eclipsing wavelet function ECLIPSE-3 F(t) = A(t)*E(t) + B(t)*[1 - E(t)] with upper/lower spline functions A(t),B(t)

Cygnus-X3 eclipsing wavelet function ECLIPSE-3

The ECLIPSE-3 function may be specified in the source catalogue as:

VAR_MODL:ECLIPSE-3A(t),B(t) are constantECLIPSE-3*HATA(t),B(t) have hat splines/binsECLIPSE-3*QUADRA(t),B(t) have quadratic splinesECLIPSE-3*CUBICA(t),B(t) have cubic spline

VAR_PARS(1): VAR_PARS(2): VAR_PARS(3): VAR_PARS(3): VAR_PARS(4): VAR_PARS(5): VAR_PARS(6): VAR_PARS(7):

- T0 in whole days location of minimum
- T0 day fraction
- T1 flare duration
 - T1 flare cycle period
 - timebin scale for spline nodes/bins
 - FWHM factor

Height factor

SPI light curves of Cygnus-X3 in PV phase

SPI light curves of Cygnus-X3 in PV phase

SPI light curves of Cygnus-X3 in orbits-19/20

SPI light curves of Cygnus-X3 in orbit-21

Cygnus-X3 for GEDSAT, MCM, BH6-0.06,0.3,0.5,1.0 models at 27.6-47.2 keV

SPI light curves of Cygnus-X3 in orbits-22/23

ISGRI light curve of EXO2030 in PV phase

RXTE light curves of EXO2030

SPI light curves of EXO2030 in PV phase

SPI light curves of EXO2030 in PV phase

EXO2030 + background for GEDSAT, MCM, BH6-0.06,0.3,0.5,1.0 models at 27.6-47.2 keV

SPI light curves of EXO2030 in orbits-19/20

Conclusions

- SPIROS-9.2 allows sources to have independent time scales
- It has a new background method BH6 to model time variations
- It has a new QUICKSCAN option for "moving mean" light curves
- It allows for eclipsing modelling functions in TRANSIENT mode
- Light curve stability dependent on background and its modelling
- Suggestions for particular time variablity functions welcome

SPI Software for OSA 5.0

- New version of spiros
- Updates of Jürgen's executables (in particular spi_obs_hist and spi_obs_back)
- Instrument responses (IRFs and RMFs)
- Simpler spi_science_analysis script
- Distributed early June

ſ	spi_science_analysis	
	SPI Scientific Analysis - General Parameters and Options <u>Save</u>	
	Frename of input OG: og_spi.fits browse <u>R</u> un	
	Overwrite existing fil∈s?: ▼ checked yes <u>Quit</u> <u>H</u> elp	
	Level of Chatter: 2	
	Log fle name: spi_salog	
	List of (pseudo) detectors: 0-18	
	Coordinate System: RADEC 🖃	
	Optional first task (check ou:put before proceeding with further tasks) CAT_I : catalogue extraction: I catalog SPIROS Input Catalog: spi/source_cat.fits[1]	
	Select Pipe ine to run	
12	Pipeline:: detault	
	default_Pipeline alternative_Pipeline	

New spi_science_analysis

- New executables in the default pipeline (spi_obs_gti and spi_obs_pha2)
- Remove "alternative" path (keeping spihist as a stand alone tool)
- Straightforward script that can be readily understood and copied in "any" languages

The Electronic Noise Feature at 1.4 - 1.6 MeV Revisited

Trixi Wunderer

Trixi Wunderer SSL, UC Berkeley

- Noise feature (forest of 'broad lines') at 1.4-1.6 MeV, attributed to electronic noise
- Last October we thought our QG-motivated search for ms flares in GRBs had led us to a method to identify – and reject – this background
- Now we've tried to do this ...

... but unfortunately Bonnard et al were right, and the PSD is still the by-far-best method of rejecting this background component

GRB040223 data – shown in Oct

The Electronic Noise Feature at 1.4-1.6 MeV - Part II

- Assume noise events are close to each other in time (Δt up to 250 μ s, i.e. up to 2 SPI time bins)
- Assume subsequent noise events happen in the same detector('s electronics)
- Also consider parts of ME (2 and 3) events
- Take into account that the noise from different detector channels appears at different energies
- Also consider correlation between noise event and event at other energy or in other detector

Results in a Nutshell

- Most detector's SE spectra show a double-peak structure in the noisy region.
- For the most part, the two peaks' reduction by a given algorithm varies
- Noise 'peaks' in the individual detector's SE spectra reduced by up to 90%
- However, wildly varying performance for the different noise peaks from the different detectors
- Have not identified method good enough to make adding cleaned-up SE events to PSD events a viable option

SE Spectra & Rejection I

time window based only, split MEs checked (v5)

Det 0-18 SE 1.4 - 1.65 MeV blk:tot, red:rej

The Electronic Noise Feature at 1.4-1.6 MeV – Part II

Trixi Wunderer, SSL, UC Berkeley

Result of I

The Electronic Noise Feature at 1.4-1.6 MeV - Part II

SE Spectra & Rejection II

energy window for each detector used (v7)

Det 0-18 SE 1.4 - 1.65 MeV blk:tot, red:rej

SPI Team Meeting, March 17, 2005

The Electronic Noise Feature at 1.4-1.6 MeV - Part II

Trixi Wunderer, SSL, UC Berkeley

The Electronic Noise Feature at 1.4-1.6 MeV – Part II

- PSD by far best rejection method of electronic noise component
- Rejection algorithms reduce noise by ~ factor of 10 at best ... not nearly good enough to make adding SEs to PSD events worthwile
- Different characteristics (or at least different susceptibility to rejection algorithms) of the electronic noise in the different channels
- One brute-force way that should work: cut the noisy region out of the data for det 0-18 and modify the response ('dead detector') accordingly

Decomposition Algorithm for Background studies

Hubert Halloin MPE, Garching

Background modeling : objectives

- Background evolution templates for scientific analysis :
 - lines models : ${}^{26}AI$, ${}^{44}Ti$, e^+-e^- , ...
 - continuum model : galactic diffuse emission
- Temporal evolution based on tracers :
 - HK data : GeDSat, IREM, ACS, ...
 - "In situ" measurements : bgnd lines and continuum rates
- ⇒ How to select (and fit) appropriate tracers for a given observation ?

• Objectives :

- Find a "minimal" set of tracers for a given observation (i.e pointings + detectors + energy selection)
- Final set of uncorrelated tracers (better fitting process)
- Initial observation approximated with a linear combination of tracers

• Input data :

- f(t) : events rate (for a given set of detectors/energy range) defined on T=∪[a_i:b_i]
- $\tau_i(t)$: set of N possible initial tracers (probably correlated)
- Output data :
 - $\tau'_i(t)$: set of N' (≤N) final tracers (normalized, uncorrelated)
 - c_i : decomposition coefficients

$$f(t) = \sum_{i} c_{i} \tau'_{i}(t) + \varepsilon(t)$$
$$\int_{T} \tau'_{i} \tau'_{j} = \delta_{ij}$$

SPI meeting – March 2005

• **Def**:
$$\langle u, v \rangle = \frac{1}{T} \int_{T} uv \Longrightarrow ||u|| = \sqrt{\frac{1}{T}} \int_{T} u^2$$

• First step : tracers normalization

$$\tau_i \leftarrow \frac{\tau_i}{\|\tau_i\|}, i = 1..N$$

• Iterative process (N steps) :

$$\begin{split} r_{0} &= f \\ \begin{cases} r_{i} = r_{i-1} - \left\langle \tau_{s_{i}}, r_{i-1} \right\rangle \tau_{s_{i}}, i \geq 1 \text{ s}_{i} = \text{selected tracer at step i, to be defined...} \\ \forall j \notin \{s_{1}, s_{2}, \dots, s_{i}\}, \tau_{j} \leftarrow \frac{\tau_{j} - \left\langle \tau_{s_{i}}, \tau_{j} \right\rangle \tau_{s_{i}}}{\left\| \tau_{j} - \left\langle \tau_{s_{i}}, \tau_{j} \right\rangle \tau_{s_{i}} \right\|} = \frac{\tau_{j} - \left\langle \tau_{s_{i}}, \tau_{j} \right\rangle \tau_{s_{i}}}{\sqrt{1 - \left\langle \tau_{s_{i}}, \tau_{j} \right\rangle^{2}}} \\ \text{SPI meeting - March 2005} \end{split}$$

• At the end of the algorithm : $f(t) = \sum a_{s_i} \tau_{s_i}(t) + r_N(t), a_{s_i} = \langle r_{i-1}, \tau_{s_i} \rangle = \langle f, \tau_{s_i} \rangle$ $\frac{1}{T} \int_{T} \tau_i \tau_j = \delta_{ij}$ $||r_0 = f|| \ge ||r_1|| \ge \dots \ge ||r_N||$ $COr(r_{i-1}, \tau_{s_i}) = \frac{a_{s_i}}{\|r_{i-1}\|}$ ~ information content added at step i

• Stable algorithm : first coefficients identical if the algorithm is stopped at iteration N'<N

- Selection possibilities :
 - "matching pursuit"

$$s_{i} = \arg \max_{j \notin \{s_{1}, \dots, s_{i-1}\}} \left| \left\langle r_{i-1}, \tau_{j} \right\rangle \right|$$

=> at the end, templates ordered according to correlation coef :

$$\left|\left\langle f, \boldsymbol{\tau}_{\boldsymbol{s}_1} \right\rangle\right| \geq \left|\left\langle f, \boldsymbol{\tau}_{\boldsymbol{s}_2} \right\rangle\right| \geq \ldots \geq \left|\left\langle f, \boldsymbol{\tau}_{\boldsymbol{s}_N} \right\rangle\right|$$

- prior order :
 - from "matching pursuit" on averaged detector rates
 - "physical" knowledge
 - ...

- Background model generation :
 - select the N' first "build" tracers (user choice...)
 - direct use of algorithm coef :

 $b_i(t) \approx a_{s_i} \tau_{s_i}(t), i \leq N'$

 fit tracers coefficients through least squares minimization (handle error bars)

$$b_i(t) \approx \hat{a}_{s_i} \tau_{s_i}(t), i \leq N'$$

The two approaches are equivalent for high statistics (otherwise should use lsq fitting)

- Choice of the "background" observation :
 - "OFF" data :
 - pro : no signal expected in the dataset
 - cons :
 - small observation time
 - possible systematic effects (solar activity, deficient tracer during "ON" data, ...)
 - "OFF+ON" data
 - pro :
 - longer exposure
 - add information on transient events
 - cons : risk of including signal in the background model
- Why using "ON+OFF" data :
 - choice of the tracers, uncorrelated with signal
 - usually negligible signal/noise ratio
 - used to select "good" tracers, final background coefficients fitted with the signal parameters

 All public observations, rev 15-139, mean detector rates, sgle events

Energy : 22 keV – 1 MeV bin = 6keV

• All public+survey observations, rev 15-139, individual detectors

 All public observations, rev 15-139, mean detector rates, sgle events

Energy : 1 MeV – 2 MeV bin = 10 keV

Conclusion

• Decomposition algorithm allowing to :

- build a set of orthogonal tracers
- discard redundant information
- truncation leads to a "minimal" set of templates (for the correlation)
- final background components as a linear combination of a subset of initial tracers
- Limitations
 - linear approach
 - decomposition order depends on observation...

Analysis pipeline at MPE Application to diffuse emission

Hubert Halloin MPE, Garching

Building the observation data

Building the observation

Observation model fitting

Application to diffuse emission

Selected data : Public + survey data, 3 datasets (19 -> 18 -> 17 detectors) Remove : first and last 10% of orbits, high solar activity (from GOES E_p >30MeV)

Rev 15 - 139

Rev 215 - 259

Rev 140 - 214

exposure ~ 3.6 Ms at Gal. center Tot. exposure ~18 Ms

Eldadic lengthesis

Galactic diffuse emission (testing ...)

2 diffuse emission components (16 combinations) :

Gaussian bulge models : R₀

Truncated exponential disc : z₀

SPI meeting – March 2005

Galactic diffuse emission (testing ...)

• Background model

- 3 main components from orthogonalization
- Detector ratios fitted for revolutions ranges 15-139, 140-214, 215-259 and merged
- variability :
 - first component : 1 amplitude par / 10 days
 - 2nd, 3rd component : 1 amplitude par / observation
- Input sources positions :
 - central radian : SPI survey (L. Bouchet), 64 sources
 - outside : IBIS sources, 24 sources
 - too many sources at high energy (>400 keV), only for program testing ...

Galactic diffuse emission (testing)

- 400 454 keV :
- Only sources \Rightarrow F_{sources} ~1.0±0.1 10⁻⁴ ph/(s.cm².keV)
- Sources + maps :
 - No bulge flux
 - No gal disc, except for $z_0 \sim 400 \text{ pc} (F_{disc} \sim 2.8 \pm 1.4 \ 10^{-4} \text{ ph/(s.cm^2.keV) ?)}$
 - F_{sources} unchanged
- 454 508 keV :
- Only sources \Rightarrow F_{sources} ~7.3±1.4 10⁻⁵ ph/(s.cm².keV)
- Sources + maps :
 - No bulge flux
 - No gal disc, except for $z_0 \sim 400 \text{ pc} (F_{disc} \sim 4.9 \pm 1.5 \ 10^{-4} \text{ ph/(s.cm^2.keV) ?)}$
 - F_{sources} unchanged

"Non physical" point sources ! Crosstalk with diffuse models

SPI meeting – March 2005

Galactic diffuse emission (testing)

508 – 514 keV :

- No input sources ...
- Formally, best likelihood for $R_0=200 \text{ pc}$, $z_0=200-400 \text{ pc}$

• almost equally good : R0=500 pc, z0=50-400 pc (not constrained)

SPI Co-I meeting held at CNR in Rome, March 15-17, 2005

Status of the SPI background analysis S. Schanne, P. Sizun, D. Maurin, B. Cordier

²⁶Al source in Galactic Plane 511 keV source in Galactic Center

Stéphane Schanne CEA Saclay / DAPNIA / SAp, bât. 709, F-91191 Gif sur Yvette S.Schanne@cea.fr

- Rev 40 139 (public data + ISWT data)
- "Light Bucket" (sum counts of all detectors, 1 keV binned, per SCW)

• #SCW:	8719	All data		
	6613	Good quality	(Data, ScHK & IREM complete))
	6430	Temperature T0	84 - 86 K	
	6017	PSAC activity	700 - 1000 counts/s (remove er	nd of revs)
	5785	IREM protons 11-30 MeV	< 0.14 counts/s (remove so	olar flares)
	5606	PSAC activity	750 - 1000 counts/s (=)	
	1326	OffPlane	outside $-10^{\circ} < B < 10^{\circ}$	500 ks
	4280	GalPlane	inside $-10^{\circ} < B < 10^{\circ}$	9000 Ms
	274	Vela	GalPlane & -101° < L < -89°	900 ks

=> GalPlane : search for Al26 & 511 keV signal OffPlane : for background model fitting (hypothesis: free of signal)

SPI background around AI26 region (IE)

OffPlane+GalPlane : Principal Components

Eigen Vectors

Eigen Values

Linear background model

background+signal(OFF) bkgsig 0.4 bkgmodel 0.35 const pca0 0.3 pca1 0.25 pca2 pca3 0.2 pca4 0.15 pca5 0.1 pca6 0.05 - MARY MARY 0 <10⁶ -0.05 ± 15 20 25 30 tsec_mean plotBkgmodel_GraphOnComponents background+signal(ON) bkgsig bkgmodel 0.4 const pca0 0.3 pca1 -pca2 pca3 0.2 -pca4 -pca5 0.1 pca6 0 ×10⁶ 10 15 20 25 30 tsec_mean

plotBkgmodel_GraphOffComponents

Bayesian background model (non-linear probabilitic neural net)

plotBkgmodel_GraphOffComponents

Linear background model

each pointing: <u>cnt/s in signal region</u> vs pca0 (normalized, centered component 0)

Blue:

bkg vs pca0

Yellow:

bkg model fit using all tracers

Red:

bkg+sig vs pca0

Green:

bkg prediction using all tracers

Bayesian background model

each pointing: <u>cnt/s in signal region</u> vs pca0 (normalized, centered component 0)

Residuals (cnt/s) - Linear model, 7 tracers

Residuals (cnt/s) - Bayesian model, 7 tracers

Residuals (cnt/s) - Linear model, 36 tracers

Residuals (cnt/s) - Bayesian model, 36 tracers

Al26 rates

Al26 signal vs L, Linear model, 7 tracers, IE

Al26 signal vs L, Bayesian model, 7 tracers, IE

Al26 signal vs L, Bayesian model, 36 tracers, IE

Al26 signal vs L, Bayesian model, 7 tracers, DE

Al26 flux

At 1809 keV for a point source on axis: $Aeff(IE) = 33.5 \text{ cm}^2$ $Aeff(DE) = 18.7 \text{ cm}^2$ => point source hypothesis : cross-check if IE and DE gives the same rate, yes !

511 keV rates

511 keV signal vs L, Bayesian model, 11 tracers, IE

511 keV signal vs L, Bayesian model, 11 tracers, DE

511 keV flux

At 511 keV for a point source on axis: $Aeff(IE) = 69.1 \text{ cm}^2$ $Aeff(DE) = 23.1 \text{ cm}^2$

511 keV line flux (if spatially size < full eff. region) => $(1.15\pm0.28\pm0.27) \times 10^{-3} \text{ ph/cm}^2/\text{s}$

Conclusions

- Tracers must be centered / normalized or transformed to Principal Components
- The more Tracers used, the better the fit
- Bayesian model gives better fit than Linear for same number of Tracers
- However, the prediction of the model is only slightly better for Bayesian than Linear Split OFF into 2 data sets -> fit on one, check prediction on other.
- Model works for Single Events (IE) or Double Events (DE) with the same tracers (lines picked up in IE or DE spectra respectively) for:
 - Al26 in Galactic plane
 - 511 keV in Galactic Center
- Nothing significant yet for Al26 / 511 keV in Vela
- Future: quit light-bucket method and produce model for each Ge for deconvolution

Thank you !

Distribution of pointings in Galactic coordinates

OffPlane+GalPlane : Principal Components Analysis

OffPlane+GalPlane : Principal Components

OffPlane : Fit linear combi. of Components to Bkg in ²⁶Al band

OffPlane : Model subtracted from Bkg in ²⁶Al band

OffPlane & GalPlane : Distribution of Residuals in ²⁶Al band

GalPlane Residuals : ²⁶Al signal map

Galactic plane ²⁶Al flux - measurement

Vela ²⁶Al flux - upper limit

Vela 26Al Flux, 3 σ (stat) upper limit: < 0.34 x 10⁻⁴ ph/cm²/s

Towards a mapping of ²⁶AI in the Galaxy?

46 tracers (before: 7) => our best Bkg fit, χ^2 =1.003 (1.014) σ_R =0.0143 c/s (0.0145)

²⁶Al Flux [10⁻⁴ ph/cm²/s] (stat errors only):

L=-30 to 30°
1.43±0.14 (1.73±0.14)
10.2 σ (12.3 σ)
COMPTEL: 2.80±0.15
Vela

 $\begin{array}{cccc} 0.35 \pm 0.13 & (0.14 \pm 0.12) \\ 2.8 \ \sigma & (1.2 \ \sigma) \\ \hline & COMPTEL: \ 0.36 \pm 0.12 \end{array}$

Systematic errors

7 tracers, PCA used=	1	2	3	4	5	6	7	Error
Fit Bkg Chi2/NDF	1.0746	1.0670	1.0676	1.0666	1.0671	1.0232	1.0142	
Fit Big NDF	1324	1323	1322	1321	1320	1319	1318	
GCR 10 ⁻⁴ ph/cm ² /s	1.72	1.88	1.88	1.87	1.88	1.61	1.73	0.13
Vela 10 ⁻⁴ ph/cm ² /s	-0.14	0.01	0.01	0.03	0.05	0.08	0.14	0.12
		-		-	-		-	
46 tracers, PCA used=	1	3	9	22	31	40	46	Error
Fit Bkg Chi2/NDF		1.0233	1.0195	1.0073	1.0082	1.0045	1.0032	
Fit Big NDF		1322	1316	1303	1294	1285	1279	
GCR 10 ⁻⁴ ph/cm ² /s		1.53	1.45	1.44	1.32	1.46	1.43	0.12
Vela 10 ⁻⁴ ph/cm ² /s		0.02	0.00	0.03	0.08	0.34	0.35	0.12

SPI mean value					
	Value	Stat	Syst	Stat+Syst	N sigma
GCR 10 ⁻⁴ ph/cm ² /s	1.63	0.13	0.21	0.24	6.75
Vela 10 ⁻⁴ ph/cm ² /s	0.08	0.12	0.21	0.24	0.33
Vela 10 ⁻⁴ ph/cm²/s 3 sigm	na	0.35	0.62	0.71	

COMPTEL				
Value Stat+Syst				
2.80	0.15			
0.36	0.12			

Conclusions

OFF AXIS CRAB OBSERVATIONS

E. Jourdain - CESR

SCW 102 0035

- ATTITUDE OK
- CRAB AT 12.8°
- USE SPIROS OUTPUT FILE (SPECTRAL MODE)
 - TOTAL COUNTS / DETECTOR
 - BACKGROUND COUNTS / DETECTOR
 - SOURCE COUNTS / DETECTOR
 - RESIDUALS / DETECTOR

Y POINTING

В

SCW 102 0035

1 SOURCE : CRAB

UN / LIGHTED DETECTORS

POSITION

DETECTOR NUMBER

REV 170 CRAB FROM ALL ANGLES

POINTING DIRECTION DURING REVOLUTION (LABEL = SCW)

RA SPI_X

EVOLUTION WITH ENERGY

SCW 102 0035

122 -132 KEV

Search for Unpredicted Lines

from Point Sources

K. Watanabe (GSFC/UMD) and B. J. Teegarden (GSFC)

Updates for the Temporal & Diffuse Line Search

Line Search Method 1 (temporal)

- 1. Reduce the SPI data with the latest gain corrections.
- => Spectra with 1 keV binning for each Science Window (SCW) and Detector.
- 2. Sum all the detectors (sumdet) for each SCW.
- => ~100 Spectra per Rev.
- 3. Subtract convolved "source-free" reference spectrum.
- 4. Time Average (1 Day)
- 5. Convolve difference spectrum with template.

Line Search Method 2 (diffuse)

Steps (1) and (2) are the same as those of Method 1.

3. Accumulate spectra over large-scale regions and make convolved difference spectra (similar to Step (3) of Method 1)

•(Galactic Center) - (Off-Center) •(Galactic Plane) - (Off Plane)

4. Convolve difference spectrum with template (same as Step (5) of Method 1.

Raw Galactic Center Spectrum

Background Subtraction

- Imperfect background line subtraction due to
 - -Lines from long half-life decays.
 - -Changing line widths due to radiation damage.
 - -Small uncorrected gain shifts.
 - -Small variations in line strength ratios.
 - -Solar Flare activation.
- Assume that source spectrum can be expressed as energydependent convolution of background spectrum (takes all of above effects into account).
 - -Express convolution as matrix multiplication.
 - -Solve for convolution function using singular value decomposition (SVD).
 - -Convolve background spectrum and take difference.

Source Minus Convolved Background Spectrum

Galactic Center minus Off-Center

SPI CoIs Meeting (3/17/05)

SPI CoIs Meeting (3/17/05)

Reference: Weidenspointner et al. 2003, A&A 411, L113 & private communication

SPI CoIs Meeting (3/17/05)

SPI CoIs Meeting (3/17/05)

Line Search from Point Sources

INTEGRAL/SPI Bright Source Catalog

HMXB	LMXB	
1E 1145.1-6141	1A 1742-294	GX 17+2
3A 2206+543	1E 1740.7-2942	GX 3+1
4U 0115+634	3A 1728-169	GX 339-4
4U1700-377	3A 1822-371	GX 340+0
AX J1820.5-1434	4U 1630-47	GX 349+2
Cen X-3	4U 1722-30	GX 354-0
Cyg X-1	4U 1730-335	GX 5-1
EXO 2030+375	4U 1735-444	GX 9+1
GX 301-2	4U 1812-12	H 0614+091
GX 304-1	4U 1916-053	H 1608-522
H 1538-522	Aql X-1	Н 1636-536
IGR J16318-4848	AX J1748.0-2829	H 1702-429
IGR J16320-4751	Cir X-1	H 1705-250
KS 1947+300	Cyg X-2	H 1705-440
LMC X-4	EXO 0748-676	H 1820-303
OAO 1657-415	Ginga 0836-429	IGR J16418-4532
SAX J2103.5+4545	Ginga_1826-24	IGRJ16358-4726
Vela X-1	GRS 1739-278	KS 1741-293
X Per	GRS 1758-258	Sco X-1
XTE J1908+094	GRS 1915+105	Ser X-1
XTE_J1855-026	GX 1+4	SLX 1735-269
	GX 13+1	XTE J1550-564

Seyferts MR2251-178 NGC 4388 NGC 4151 NGC 4945 MCG -05-23-16 NGC 4736 Cen A

Microquasar: SS 433 Neutron star: IGR J17597-2201 Pulsar: XTE J1807-294 SNR: Crab Blazar: 3C 273

Others

4U 1901+03	IGR J18406-0539
4U 1909+07	IGR J18450-0435
IGR J06074+2205	IGR J18483-0311
IGR J15479-4529	SAX J1744.7-2916
IGR J16479-4514	SAX J1805.5-2031
IGR J16558-5203	IGR_J17391-3021
IGR J17252-3616	IGR J17464-3213
IGR J18325-0756	

XB

Cyg X-3 IGR J19140+0951 XTE J1720-318

Choice of Energy Bin Sizes

- Want to bin at SPI resolution for line search
 - But fine binning at high energies can lead to small (< 1) no. of counts/bin and non-gaussian errors.
- Found through tests that if binning is chosen to maintain > 1 count/bin on average that errors are well-behaved when SPIROS is run in chi2 mode.
 - Hence the following choice of binning.

20keV-2MeV:1keV 2MeV-8MeV:10keV

All Line Candidates

\$

0 0

Sco_X-1 Energy: 6655.0 keV Width: 20.0 keV Flux: 2.560e-04 ph cm^2 s^1 Signif: 3.5

SPI CoIs Meeting (3/17/05)

Vela_X-1_s Energy: 6075.0 keV Width: 160.0 keV Flux: 2.883e-04 ph cm^-2 s^-1 Signif: 3.6

Current Status/Future Work

Diffuse Sources

~ No new lines found in large-scale searches.

—Upper limits vary between few x 10^{-5} ph cm⁻² sec⁻¹ and ~ 10^{-3} ph cm⁻² sec⁻¹ depending on energy, width and exposure.

~ Diffuse line search.

—Search over 10° grid in the Galactic Plain and selected off plain areas with significant exposures.

Point Sources

- ~ No significant candidates found so far.
- ~ 60% of search completed.

NEXT STEP

Data from orbits 19–130 have been analysed, interpreted and accepted for publication in A&A Letters. The next step is to acquire as much data as possible from the following year (up to revolution 229) in order to check the robustness of the analysis.

(1) Do the statistics and significance of the result improve as more data come in?

(2) Are there new sources of systematics corresponding to the new problems experienced (failure of detectors 2 and 17)?

This work is now only just beginning.

Positronium Continuum Emission: All-Sky Distribution

by

Georg Weidenspointner

CESR

on Behalf of the CESR SPI Team

Motivation

- Two γ -ray signatures of positron annihilation: 511 keV line and P_s
- For $f \sim 0.92$: $F_{3\gamma}/F_{2\gamma} \sim 3.5$

 \implies most of γ -ray signal due to positron annihilation is in $P_s!$

Background Model / Data Analysis

- As usual, the background modelling is crucial...
- S/B is small: simple and robust
- So far: used 3 components of 511 keV line background model:
 - GeDsat
 - constant
 - GeDsat convolved with 65 Zn ($T_{1/2} = 244$ d)
- Application to 400-600 keV, public data release from Dec. 10, 04 ("first year of mission"):
 - Works well in general
 - A few strong residuals
 - For Positronium continuum:
 410-430, 447-465, 490-500 keV

Model Fitting I

- First step: "2D Gaussians" in individual and combined energy bands: consistent within statistics \implies use combined bands
- Crab and Cyg X-1 are significant \implies included in fits
- Models for Galactic continuum emission:
 - CO
 - -HI
 - DIRBE 3.5 μ m
 - DIRBE 240 μ m

Model Fitting II

Bulge only	<i>l</i> ₀ , <i>b</i> ₀ [°] FWHM, FWHM, [°]	$1.3 \pm 0.8, -0.8 \pm 0.6$ $10.0^{+4.1}$ 6.6 ^{+1.4}
	ϵ	0.66 ± 0.23
	f [ph/cm²/s]	$(1.22\pm0.12) imes10^{-3}$
Bulge + HI	<i>l</i> ₀ , <i>b</i> ₀ [°]	1.3 ± 0.8 , -0.9 ± 0.6
	FWHM $_l$, FWHM $_b$ [°]	$9.3^{+2.6}_{-1.5}$, $6.8^{+1.5}_{-1.2}$
	ϵ	0.74 ± 0.22
	$f_b \ [{ m ph/cm^2/s}]$	$(1.16\pm 0.11) imes 10^{-3}$
	f_{HI} [ph/cm 2 /s]	$(4.18 \pm 1.52) imes 10^{-3}$
Bulge + CO	<i>l</i> ₀ , <i>b</i> ₀ [°]	1.3 ± 1.1 , -1.2 ± 1.0
	FWHM $_l$, FWHM $_b$ [°]	$9.2^{+3.1}_{-2.1}$, $7.8^{+3.2}_{-1.7}$
	ϵ	0.85 ± 0.36
	$f_b ~[{ m ph/cm^2/s}]$	$(0.86 \pm 0.14) imes 10^{-3}$
	f_{CO} [ph/cm 2 /s]	$(1.97\pm0.48) imes10^{-3}$

- Centroid consistent with GC, ellipticity consistent with spheroid
- Bulge consistent with 511 keV line
- Remember: is total emission (P_s and Galactic continuum)

- Map of total (extended) emission in 3 analysis bands, early iteration...
- Crab and Cyg X-1 are subtracted
- Emission is concentrated in bulge, roughly symmetric, "no" disk
- Very similar to 511 keV line map...

Point Sources

- Searched for point sources with SPIROS in 3 energy bands combined
- Outside bulge: Crab and Cyg X-1
- In bulge: formally 6 point sources, but none corresponds to known objects
- \implies Assume for now: bulge emission is diffuse
Spectroscopy I

- Idea: demonstrate that bulge emission is dominated by P_s
- Difficulty: requires assumption on sky distribution, in particular for Galactic diffuse emission there are uncertainties...
- Bulge: assume spherical "2D Gaussian", 8° FWHM, at GC
- Disk: no disk, CO, HI CO appears best fit, but poor statistics...
- Determined flux in 6 energy bands
 - 410–430 keV
 - -447-465 keV
 - 490–500 keV
 - 500–507 keV
 - 507–515 keV
 - 520–565 keV

Summary

- Sky distribution of P_s is consistent with 511 keV line
- Flux/spectrum is consistent with previous results (SMM, OSSE)
- Full-blown XSPEC analysis is in progress...
- Background modelling in more energy bands is in progress...

Status Note on ²⁶Al Studies in the Galaxy

☆ Reminder: Jan 2005 Noordwijk Results
 ☆ Towards optimizing spectral resolution
 ☆ Updated results rev 15-259

Imaging Spectroscopy: Validation of Sky Signal

Method: Sky Model (&Bgd) Fitting per Energy Bin -> Spectrum

Perform Identical Analysis on "OFF" Reference Dataset

Key Aspects:

- ☆ Identical Sky and Background Models
- ☆ Different Measurement without ²⁶Al Counts
 - Choose High-Latitude Reference (all pointings b>30°)
 - Match to Pointing/Exposure Scheme of Real Dataset

Expectations:

* "DC-Level"/Offset: Reflects Background Model Accuracy

- Continuum Part Dominates Count Spectrum
- Poor Bgd Fit Increases Apparent Sky Correlation of Data

☆ Spectral Feature:

- If Instrumental-Background Feature:
 - Spectral Features ~Similar for Both Cases
 - Spectral Feature Mirrors Instrumental Feature (Width, I_{line}/I_{cont})
- 🐨 If Celestial Signature:
 - Spectral Feature ~Absent for OFF Data
 - Spectral Feature Differs from Instrumental Feature (Width, I_{line}/I_{cont})

Imaging Spectroscopy: Sky Signal Systematics

Variations of Input Models: Background, Sky

Need to Use Reliable Background Time Variability Model: Sky Model ~Uncritical
Width~Stable

Imaging Spectroscopy: ²⁶Al Line Shape (1)

SPI Studies at MPE Relevant for ²⁶Al: (Dec'04...Mar'05)

- Background Model Developments and Tests
- Spectral-Response Determination for Fine Spectroscopy
- A Spectral Analysis through Model Fitting

* Imaging

Roland Diehl, Hubert Halloin, Karsten Kretschmer, Andy Strong, Christian Ciemniak, Michael Lang, Gabi Schächner, Laurent Lerusse, et al.

Data

Available at MPE:

Rev.15-225 (Jan'05)
Rev 15-259 (Mar05): 7130 pntgs, 11.48 Ms GP, 1.56 Ms High-Latitude)

📲 Usages:

Calibration" Data
 Rev 1-139: Background Tracer Studies
 Rev 30-212: Spectral Degradation
 Survey" Data

Background Modelling

Science Analysis

Selections

☆ (spiselectscw)
⑦ Orbit Phase 0.1-0.9
⑦ GeDSat Rate
⑦ IREM

Results Update: Simple/Straightforward ON/OFF

13.30

sigma of detection

Energy (keV)

Corrections for Gain Variations within Orbits

☆ Cmp. Lonjou et al. ESA-SP 552, Roques SPI Mtg Temperatur-Based Gain Correction of Raw Data * Processing Modification ('std'-> 'std-1') Cold Plate Temperature from HK Data ☞ ch → ch' (T) per pntq -> energy calibration per rev -> histogramming * Investigations 1213 5 Rev 66 and 96 (large T variations): - Spectra changes: Line Centroids and Widths Expectations ☆ 0.04 keV Variability per Revolution (ref. Lonjou Fig. 4) 📲 Results: ☆ ...not yet finished... <SPIMtg Mar05>

Roland Dieh

Determination of Spectral Response vs. Time

- ☆ Fit Spectra in Line Regions with Gaussian+Exponential
- Fit Response Parameters (Gaussian Width, Exponentail Width) Between Annealings
- Determine Intrinsic Detector Resolutions (Gaussian Width)
- Provide Algorithm for "Effective Response Width" per Pntg

Application

Determine "Effective Response Width" per Selected Dataset

Assembly of Spectral Response f(E,t)

Separate observed FWHM

☆ Intrinsic detector resolution
☆ degradation

Derived Detector Resolutions

After Elimiting Effects of Degradation

Detector Resolutions (intrinsic)

Derived Line Shapes

- Example for Rev 15-259 Galactic-Plane Data (±30°)
 Line at ~1800 keV
 - Convolved with Gaussian of increasing Width ("cosmic line")

Instrumental Effective Line Shape

²⁶Al Line from Inner Galaxy

☆ COMPTEL ²⁶Al Allsky Map ☆ Background from Combined & Orthogonalized Tracers ☆ Rev 15-159, Galactic Plane +/- 30°, 0.5 keV bins

Roland Diehl

Checks and Systematics: Different Backgrounds

📲 data average

high latitudes

orthogonalized tracers

Checks and Systematics: Near Strong Instrumental Lines

raw events

high-latitudes bgd

tracers bgd

²⁶Al Line from Inner Galaxy

Comparison to "Effective Line Width" of Broadened Lines Different "cosmic-line" widths -> 1.x keV

Imaging Spectroscopy: Line Shape Variations in the Galaxy?

Need Statistics & High-Resolution Data Processing & Analysis (Degradation!)

<SPIMtg_Mar05>

Roland Diehl