

Effective Areas

IBIS sources > 100 keV

4U0142+61	AXP	1.5	0.3	3.4	0.5	8.	2.										1	
Crab	PWN PSR	1000.0	0.4	1000.0	0.6	1000.	2.	1000	6	1000.		з.	С	1000.		3.		
MKN3	AGN	4.2	0.2	6.1	0.4	10.	2.				D				A		~7	
VelaPulsar	PWN PSR	6.74	0.09	8.4	0.1	10.3	0.7				Baz	zzar	10	et al,	Ap.	J 20	07	
GS0836-429	LMXB T B	30.58	0.09	27.2	0.1	14.6	0.7											
NGC4151	AGN Sey1.5	32.0	0.6	40.	1.	35.	4.			28.5	0.3	0.3	b	18.0	0.3	0.5	2	
NGC4388	AGN Sy1	15.9	0.7	17.	1.	25.	5.										3	
3C273	AGN QSO	7.7	0.3	9.2	0.6	12.	2.			23.7		0.7	а	27.		1.	4	
NGC4507	AGN Sylh	8.7	0.4	10.7	0.6	10.	3.											
NGC4945	AGN Sey2	13.2	0.3	20.3	0.4	22.	1.			23.1	0.6	0.6	b					
CenA	AGN Sey2	36.5	0.2	47.4	0.4	57.	2.	65	6	49.5	0.3	0.3	b	52.0	0.5	1.0	5	
Cir galaxy	AGN Sy1h	13.6	0.2	11.4	0.3	7.	1.			3.4	1.1	0.5	С					
PSRB1509-58	PSR	8.5	0.2	11.0	0.3	14.	1.										6	
XTEJ1550-564	LMXB T BH	70.8	0.2	114.4	0.3	146.	1.	155	4	115.	1.	1.	а	114.2	0.5	1.5	7	
4U1608-522	LMXB T B A	14.3	0.2	7.7	0.3	5.	1.											
ScoX-1	LMXB Z	629.0	0.4	21.0	0.6	12.	2.											
4U1630-47	LMXB T BHC	44.2	0.2	34.4	0.3	30.	1.	30	4	48.5	0.3	0.3	а	43.0	0.5	0.5	8	
4U1636-536	LMXB B A	22.6	0.2	13.0	0.3	8.	1.											
OAO1657-415	HMXB XP	78.6	0.2	42.5	0.3	7.3	0.9											
GX339-4	LMXB T BH	28.3	0.2	34.4	0.3	34.	1.	31	4	43.4	0.3	0.3	b	28.8	0.5	0.5	9	
4U1700-377	HMXB	196.21	0.09	120.6	0.1	52.5	0.7	23	3								10	
4U1702-429	LMXB B A	16.1	0.2	10.3	0.3	8.0	0.9			10.2	0.3	0.3	b					
4U1705-440	LMXB B A	23.7	0.2	13.0	0.3	4.5	0.9			14.2	0.3	0.3	b					
IGRJ17091-3624	BHC?	8.78	0.09	10.9	0.1	11.6	0.6										11	
XTEJ1720-318	LMXB T BHC	2.59	0.09	3.3	0.1	3.2	0.5										12	
GRS1724-30	LMXB B A G	19.21	0.09	17.0	0.1	12.0	0.5			26.1	0.6	0.6	b					
GX354-0	LMXB B A	39.17	0.09	15.5	0.1	7.2	0.5											
GX1+4	LMXB XP	38.98	0.09	30.8	0.1	9.9	0.5			10.5	0.3	0.3	b					
SLX1735-269	LMXB B	9.33	0.09	8.4	0.1	5.9	0.5											
1E1740.7-294	LMXB BHC	35.84	0.09	45.3	0.1	45.1	0.5	37	2								13	
KS1741-291	LMXB T B	5.64	0.09	4.9	0.1	3.3	0.5											
A1742-294	LMXB T B	13.86	0.09	7.5	0.1	2.7	0.5	100		Ser. Law	-	÷.,	-					
IGRJ17464-3213	LMXB BHC	28.08	0.09	20.8	0.1	17.5	0.5	20	2	100	100						14	
SLX1744-299	LMXB B	8.31	0.09	5.4	0.1	4.1	0.5											
IGRJ17597-2201	LMXB B D	7.02	0.09	6.6	0.1	4.3	0.5	-		1.00		100						10
GRS1758-258	LMXB BHC	53.58	0.09	71.6	0.1	78.9	0.5	70	2		100						15	RE
SGRJ1806-20	SGR	3.05	0.09	4.2	0.1	6.8	0.6		1	2.4		0.3	a	2.2		0.5	16	5
401812-12	LMXBBA	25.6	0.2	26.3	0.3	22.	1.	18	4	20.0						1 24	17	
GS1826-24	LMXB B	79.26	0.09	66.3	0.1	38.2	0.7	12	3	32.2	0.3	0.3	D				10	
PKS1830-211	AGN QSO	2.8	0.2	3.5	0.3	4.4	0.8									The.	18	2 .
IRA1832-33	LMAB B T G	10.81	0.09	10.9	0.3	8.0	1.8			21		2		21		2	1.5	
AU1000+07	SNR AAP	2.0	0.2	4.0	0.3		1.			21.		2.	a	51.	42	3.	1	100
401909107	TMAD T AP	14.3	0.2	9.0	0.3	0.2	0.9			20	1 1	0.0		2 2	10	0.0	10	23
CDC1015+105	LMAD BAT	260.9	0.2	105 4	0.3	50	1	47	4	92.6	0.2	0.8	h	5.5	0.2	0.0	20	
GR31910+105	LMAD BH	200.8	0.2	712 5	0.3	632	2	522	4	02.0	3	3	b	970	5	5	20	
CYGA-1 EX02030+375	UMAR ADRO	39.9	0.3	20 4	0.4	3 4	0.0	522	0	950.	5.	5.	D	070.	5.	5.	22	
EX02030+373	UMVD	204 1	0.2	20.4	0.4	31	1	20	5	18.0	0.2	0.2	h	12 1	0 5	0 5	22	
CYGA-3 TCR.T21247+5059	ACN Sy 12	5.6	0.2	7.0	0.3	6.0	1.5	20	5	10.0	0.5	0.5	D	12.1	0.5	0.5	23	
101021247+3030	HOR DY II	0.0	V.2	/.0	0.4	0.0	1.0											

Spectra of BHs in low/hard state

Unfolded model with upper limit reflection components

- 1E1740.7-2942, July-Sept 2012 (Nustar 10ks, IBIS 130ks)
- *Nustar* alone cannot detect the high energy cutoff.

Ratio to absorbed PL model

Results of fitting NuSTAR and IBIS/ISGRI spectra (epoch 2 and epoch3, respectively) with an absorbed (Tbabs) cutoff power law model.

Instrument/ Range	Ν _H (10 ²² cm ⁻²)	Г	E _{fold} (keV)	X ²	<i>Fl</i> ₂₀₋₅₀ ^(*) (10 ⁻¹² erg cm ⁻² s ⁻¹)
NuSTAR, 3-70 keV	18.3 ± 0.9	1.58 ± 0.04	215(-74,+232)	761/740	442 ± 8
IBIS/ISGRI 26-250 keV	20 (fixed)	1.43 ± 0.19	123(-34,+69)	24.6/19	490 ± 13
					Λ

The Future of Hard X-ray Astrophysics, Paris, 13-14 January 2014

4

Reflection spectra

- Simultaneous coverage of soft and hard X-ray band is needed for complete study of reflection spectra
- ♦ In bright BH and NS sources, due to its high sensitivity NuSTAR can resolve the curvature of the continuum from the one induced by reflection.

The driver is then the effective area, but for higher ionizations energy extension >100 keV is desirable

Black holes: reflection and spin measurements

- Most important limitations concern systematic errors in models (and sometimes, instrument calibration)
- In addition, spin measurements assume that the inner radius of the BH is spatially coincident with the ISCO. The spin is determined by the fact that the location of the ISCO is a function of spin

NuSTAR as other X-ray instruments shows preference for high values of spin

6

Soft states spectra: Cyg X-1

♦ NuSTAR,16ks exposure. Suzaku/XIS,~2ks.

◆ Fit by reflection models with relativistic, blurred iron line.
The data could constrain the spin of the BH and inner disk inclination

Reflection from NS sources: Serpens X-1

 ♦ Self-consistent reflection model convolved with relativistic line
♦ Constraint on NS radius: R<12.5 km assuming M=1.4M_{sun}

8

Miller et al, ApJ 2013

Hercules X-1 Cyclotron line shaping

NuSTAR and *Suzaku* simultaneous observations, spaced in time during 35 days cycle phase (exposures 11,22,17ks)
CSRF well modeled with either gaussian (*gabs*) or Lorentzian (*cyclabs*) optical depth profile (*cyclabs*)

Line is smooth (no evidence for wings). Indication for a fan beam pattern

Fuerst et al. 2013, ApJ

On the way to SMBHs: Ultraluminous sources

- ♦ Are ULX super-Eddington sources? Are they intermediate mass BHs?
- ♦ HLX-1 in ESO 249-49 (~95 Mpc) is the most luminous ULX, with a peak luminosity (0.2-10 keV) as high as ~1.3x10⁴² erg/s
- Bright outbursts & correlated spectral variability similar to the states of bright LMXBs

HLX-1 as observed by HST. A population of massive young stars is seen around it *(Farrell et al 2012)*

Composite HST image of ESO 249-49 from near-IR, optical & UV data. ULX-1 is indicated by red tic marks Figure 1 from Farrell et al. 2012, ApJL in press (arXiv: 1110.6510)

- The high luminosity of HLX-1 is evidence for an Intermediate Mass BH (~ $500M_{\odot}$?) possibly accreting from a dense environment of stars and gas.
- High energy spectra of ULXs are lacking sensitive data beyond 10 keV: neither the nature of the PL component, nor any reflection or other feature from a disk can be firmly established. *Nustar* is foreseen to study this for a sample of ~10 selected objects

ULX5 in Circinus Galaxy

- Nustar observation of ULX5 in the outskirts of the Circinus Galaxy
- Nustar+XMM spectrum: in this case, a thermal dominated state, but there is also evidence for state transitions similar to sub-Eddington stellar BHs. Nustar exposure is 95ks

Long term variability is also observed in many other ULXs

11

ULXs: source types and spectra

- Could there be a hidden population of fainter (or highly absorbed) ULXs?
- As other ULXs, the spectrum shows a curvature below 10 keV, the nature of which is unclear: Comptonization, residual of reflection or Fe line feature?

The Future of Hard X-ray Astrophysics, Paris, 13-14 January 2014

Nuclear activity and ULXs in Star Forming Galaxies

- Chandra-NuSTAR study of the nuclear region in NGC253. Nustar 165ks exposure, 20 ks Chandra
- A variable source (B) is detected, not coincident with the nucleus of the Galaxy.
- In this case it has been possible to measure a NuSTAR spectrum of the variable source by studying the time behaviour of sources monitored at high resolution in the soft
 - X-rays
- A (now dormant) AGN is detected in the 2003 Chandra data
 - AGNs in starburst Galaxies can be a class of highly absorbed sources: e.g. Arp299-B (Ptak et al., AAS 2014)

Arches cluster in the GC

Fist time detection of hard X-ray (>10 keV) emission by the Arches cluster.

• High energy emission. What is it? LECR or reflection by MC.

Spectral upper limits above 20-30 keV, relatively close to the models

Summary [1/2]

Most topics I considered show the advantages of improving the effective area in the range ~20-100 keV:

- a. Studies of parameters of BHs at all mass scales.
- b. NS and cyclotron line studies.
- c. Study of highly absorbed sources (HMXB in our Galaxy, CT AGNs, and X-ray faint quasars)
- d. Deeper surveys at all spatial scales
- e. Characterize emission models for complex structures (e.g. nonthermal emission of the GC sources; and diffuse emission)

Summary [2/2]

Enhanced angular resolution is important at least for :

- a. complex fields and Galactic surveys like GC, Norma and other high star formation regions, etc;
- b. resolving nuclear activity in nearby Galaxies and detecting/ characterizing more ULXs;
- c. mapping of diffuse regions, SNR, & PWN emission

Extension of the energy band beyond ~100 keV would allow:

- a. studying in detail low/hard states and cutoffs in Galactic BHs and AGNs.
- b. Constrain AGN contribution to X-ray background at higher energies
- c. Help reflection studies for bright accreting sources
- d. Extend the range of cyclotron line studies up to B fields of $\sim 2x10^{13}$ Gauss

16