GRBs : the hard X-ray window

J-L Atteia – IRAP

Outline...

• Why observing GRBs?

• Some requirements of a GRB mission

• GRB follow-up in hard X-rays

Warning: These slides do not provide an overview of the field, they are simply aimed to foster discussions...

Why observing GRBs?

- GRBs are luminous high-energy transients likely associated with catastrophic accretion of matter by a newly born black hole or with the fast slowing down of a newborn magnetar.
- The physics of GRBs in interesting and complex, it involves newly born black holes and magnetars, catastrophic accretion, and ultra-relativistic jets
- GRBs open a new window on cosmic explosions and on the progenitors of stellar mass black holes
- GRBs are primary candidate sources for multi-messenger astrophysics, GW, neutrinos, CR
- Distant GRBs probe the ISM and IGM in the young universe: metal enrichment, reionization, structure of matter along the LOS, gravitational lensing
- GRBs allow probing new physics: e.g. tests of Lorentz invariance

Some facts about GRBs

- GRBs require excellent space-ground synergy
- GRBs are rare *Interesting GRBs* are even more rare
 - Need to detect hundreds of GRBs to get a handful of remarkable events: high-z GRBs, ultra-long GRBs, nearby GRBs, sub-luminous GRBs...
 - A space mission dedicated to GRBs must detect hundreds of GRBs
- Physics: few bright and well-observed events have proved to be the key (e.g. GRB 130427)

Requirements of a GRB mission

Some GRB missions

Mission	Period	Energy range (keV)	Detection GRB area (cm ²⁾ loc./y		Redshifts
BeppoSAX	1996–2002	2-28 40-700	<mark>530</mark> *0.33 (x2)	10	9
HETE-2	2000–2006	2-25 7-400	350 *0.33 160	20	19
INTEGRAL	2002-	15-200	2600 *0.5	10	5
SWIFT	2004–	15-150	5200 *0.5	90	250
Fermi	2008–	>100000 8-1000 200-40000	~10000 130 (x12) 130 (x2)	10 	10
SVOM	2020?	4-100 50-5000	1000 *0.4 250 (x3)	70-80 	

• Many future missions, like A-STAR, JANUS, Lobster, LOFT, propose detecting GRBs in the hard X-ray range, typically 1-20 keV, 2-50 keV,...

GRB detection

- The hard X-ray window (E>few keV) is a good window for GRB detection and localization
 - More photons
 - Permits the detection of the not-so-well-explored realm of X-Ray Flashes and high-z GRBs
- Detection and localization over a wide field of view 2 options:
 - Coded masks (1D or 2D): intrinsic multiplexing, large background (DXRB), many photons, better for short transients – many flown
 - Lobster eye optics: no multiplexing, very low background, few photons, better for long soft transients – yet to be flown
 - Both techniques require large detection area

Coded masks: background for GRB detection

- Below ~100 keV the dominant background is the Diffuse X-Ray • Background
- Going to lower energies improves the signal-to-noise ratio

Polarimetry of the prompt hard X-ray emission

- The detection of the prompt GRB emission in hard X-rays allows the localization of the source, and the measure of the prompt emission (spectrum, light curve, polarization) close to the maximum of the SED (spectral energy distribution)
- The spectro-temporal evolution of GRBs is well studied, but the polarization of the prompt emission remains to be explored :
 - The polarimetry of the prompt high-energy emission provides a unique diagnostic of the physics at work during the prompt phase, when most of the energy is radiated
 - The hard X-ray window (≈100 keV) is well suited to measure the polarization of the prompt emission, using the sensitivity to polarization of the Compton interaction
 - The next 3 slides show recent results from the GAP polarimeter suggesting (after RHESSI? and INTEGRAL) that some GRBs are highly polarized
 - There is a true need for sensitive polarimetry of the prompt GRB emission

GAP

The Future of Hard X-ray Astrophysics

Results of Polarization Analyses

Yonetoku et al. 2013

GRB	Polarization Degree (%)	Duration T90 (sec)	Incident Angle (deg)	E_p	fluence (erg cm^{-2})	flux (photon $cm^{-2} s^{-1}$)
						(photon cm s)
100826	27 ± 11	100	20	606^{+134}_{-109}	2.94×10^{-4}	9.03
110721	84^{+16}_{-28}	11	30	$375.5^{+26.5}_{-23.6}$	3.43×10^{-5}	6.71
110301	70 ± 22	7	48	$106.80^{+1.85}_{-1.75}$	3.35×10^{-5}	75.59
110825	< 47	12	29	$233.6^{+21.9}_{-19.9}$	5.06×10^{-5}	6.16
110625	< 56	27	41	190^{+17}_{-14}	6.09×10^{-5}	8.21
100715	< 83	30	19	-	-	-
101014	< 71	30	54	$181.40^{+5.66}_{-5.44}$	1.88×10^{-4}	3.74

90% upper-limit

Significant Polarization was detected from bright 3 GRBs.

- **GRB100826A** : Polarization angle changed (3.5 σ confidence level.)
- GRB110721A & GRB110301A : Polarization angle was stable.

We need the emission model to explain both cases of change and no-change of polarization angle.

GRB110301A & GRB110721A

We detected the polarization from two bright GRBs with high significance.

The polarization angles did not change during the prompt GRBs.

180

160

140

120

100

80

60

GRB110301A

 $PA = 73 \pm 11 deg$

 2σ

 1σ

80

 $P = 70 \pm 22\%$

 3σ

3.7σ

 $\Delta \chi^2$ values

15

10

5

100

 $\Delta \chi^2$ values

20

15

10

5

100 14

80

GRB follow-up in hard X-rays

X-ray follow-up (general)

- Most GRBs have bright X-ray afterglows, lasting hours to days. A *sensitive* X-ray telescope may:
 - Permit the detection of late afterglow breaks, providing measures of beaming angles for broad jets (θ_j > few degrees)
 - Identify the faint afterglows of short GRBs (potential GW sources).
 - Identify the afterglows of dark and highly redshifted GRBs, pinpointing galaxies at z ~ 6-10.

Late X-ray breaks

Late X-ray afterglow of GRB 060729 detected with Chandra

Short GRBs

X-ray (left) and optical (right) luminosity of short (red) and long (cyan/green) GRBs.

X-ray afterglows of short GRBs are fainter and decay faster, remaining visible for shorter times.

APC - 13/01/2014

Dark GRBs

- Swift GRB afterglows:
 F_{opt} vs F_X
- Dark GRBs have faint visible afterglows, but normal X-ray afterglows

GRB follow-up in hard X-rays

- A broad spectral coverage is fundamental to understand the physics of the afterglow
- Using the same (broad) spectral range for detection and follow-up helps understanding the prompt-to-afterglow transition, and the emergence of the afterglow
- Two recent observations with NuSTAR

Synchrotron spectrum of the afterglow

- The standard model attributes the afterglow to synchrotron emission of electrons accelerated at the external shock (when the relativistic jet impinges the external medium). This model predicts a spectrum made of connected power laws, evolving with time
- The validation of the standard model is very important (e.g. to interpret Fermi-LAT observation of GeV photons hours after trigger), but it relies on measuring the predicted power laws.

Hard X-ray follow-up

- A broad spectral range is required to measure the spectral slope of the afterglow in the X-ray range:
 - Accurate measure of the spectral slope
 - Identification of spectral breaks or curvature of the spectrum
 - Measure of N_H
 - Interpretation of optical emission

GRB 130427A with NuSTAR

• GRB 130427A

Kouveliotou et al. (arXiv: 1311.5245):

- « The NuSTAR data are essential in constraining the shape of the broadband spectra. »
- « NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. »

GRB 130925A with NuSTAR

- GRB 130925A
 - Bellm et al. (Atel #5435): «NuSTAR observes a broad absorption feature centered near 6 keV. Simultaneous Swift-XRT spectra support the existence of this feature at lower SNR. An F-test of a Gaussian absorption feature fit to the combined data sets yields a detection significance of 5.5 sigma. Preliminary searches for features in the early-time XRT data have not identified any clear signatures; additional tests are ongoing. »

• A suivre...

Summary

- Prompt emission:
 - The hard X-ray window seems the best choice for GRB detection and initial location
 - Polarimetry is a high-priority scientific objective
 - Requires ≈10³ cm² of detection area to get enough photons
- Afterglow:
 - The extent of the spectral coverage is very important to understand the physics of the afterglow, with issues like the measure of the SED of the afterglow, the prompt-afterglow transition, and the interpretation of the optical emission

X-ray halos from GRBs (on galactic dust)

- Diffusion of GRB prompt X-rays by galactic dust
- Characteristic size of X-ray halos : $\frac{10'}{E^*a}$
 - E = energy (keV)
 - a = characteristic size of the grains
- The size of the halo depends on the size of the grains and their distribution along the line of sight
- For GRB 031203, for instance, there are two clouds at 880 pc and 1390 pc (Vaughan et al. 2004).